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Abstract: Background: Sulfur-containing compounds represent an important class of chemical compounds due 

to their wide range of biological and pharmaceutical properties. Moreover, sulfur-containing compounds may be 

applied in other fields, such as biological, organic, and materials chemistry. Several studies on the activities of 

sulfur compounds have already proven their anti-inflammatory properties and use to treat diseases, such as 

Alzheimer’s, Parkinson’s, and HIV. Moreover, examples of sulfur-containing compounds include dapsone, 

quetiapine, penicillin, probucol, and nelfinavir, which are important drugs with known activities.  

Objective: This review will focus on the synthesis and application of some sulfur-containing compounds used to 

treat several diseases, as well as promising new drug candidates. 

Conclusion: Due to the variety of compounds containing C-S bonds, we have reviewed the different synthetic 

routes used toward the synthesis of sulfur-containing drugs and other compounds. 

Keywords: Sulfur, C-S bond, RN-18, quetiapine, 3-arylthioindoles, ebsulfur, dapsone.  

1. INTRODUCTION 

Sulfur-containing molecules are often found in nature. They are 
biologically and pharmacologically active and are used to treat 
several diseases [1]. The C-S bond is present in several drug 
molecules, which are used to combat cancer, HIV, and Alzheimer’s 
disease (Fig. 1) [2]. 

Due to the important applications of sulfur-containing 
compounds in several fields of science, a large number of research 
groups around the world have turned their attention to the 
development of efficient methods used to form C-S bonds [3]. 

Conventional methods used for C-S bond formation are quite 
inefficient due to the harsh reaction conditions used, such as 
elevated temperature, long reaction time, the use of polar and toxic 
solvents, as well as multistep syntheses [4]. In order to overcome 
such shortcomings, different methodologies have been proposed 
including cross-coupling reactions.  

This review aims to present the different synthetic routes used 
to prepare C-S bond-containing drugs, as well as promising 
molecules with high pharmacological potential. Their main 
biological activities used in Medicine are also described. 

2. SYNTHESIS AND ACTIVITY STUDIES OF RN-18 AND 
RN-19 

2.1. Previous Reports on the Synthesis of RN-18  

Since the very first cases of AIDS were identified in 1981, the 
disease has been the cause of more than 20 million deaths around 
the world, despite promising medicinal advances [5]. 
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Over the last two decades, more than 25 anti-HIV drugs have 
been produced, which target the different phases of the HIV life 
cycle [6]. Among the main approaches to treating HIV-1, 
chemotherapy is used to inhibit protease and reverse transcriptase 
[7]. However, due to HIV-1 viral resistance and the toxicity 
associated with the inhibitors of these enzymes, more powerful and 
safe therapies have been developed [5]. Viral infectivity factor 
(VIF), a protein found in HIV and other retroviruses, is one of the 
regulatory elements encoded by the HIV-1 virus, which is essential 
for its replication [5].  

Efficient HIV virus replication requires the presence of VIF, 
once it opposes the activity of the APOBEC3G (A3G) enzyme, 
which has the function of catalyzing hypermutations in viral DNA 
and acts as a "weapon" against retroviruses [8]. Cells with A3G are 
known as non-permissive toward viral replication. In such cells, the 
HIV-1 virus requires VIF for replication [8]. In the case of host 
cells without the A3G enzyme (known as permissive cells), virus 
replication is independent of VIF [5]. Once the cellular homologues 
of VIF HIV-1 are known, this protein represents a target for 
antiviral intervention [6]. 

Small molecules that specifically inhibit the functions of VIF 
and restore the cellular levels of AG3 have been studied as 
inhibitors of HIV-1 virus replication [7]. The most promising 
advances have involved studying the activity of 25 organic 
compounds [5]. 

Among the molecules studied, two compounds, RN-18 and RN-
19 (Fig. 2), stand out as antagonists of VIF, inhibiting HIV-1 virus 
replication in non-permissive cells [8]. Moreover, RN-18 increases 
the A3G levels in the cell, enabling its incorporation into the virus 
[6]. To date, data analysis has indicated that RN-18 is a specific 
VIF inhibitor during HIV-1 virus replication. Besides, by targeting 
the VIF–A3G interaction, RN-18 is a valuable compound for the 
development of antiviral therapies against HIV-1 [7]. 
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In order to obtain the bioactive compound (RN-18) and 
consequently upgrade our knowledge of its biological activity, 
some reports from the literature are described in the following 
section. 

Ali et al. [7] have described the synthesis of RN-18 and its 
derivatives using two synthetic routes, which both involve the 
cross-coupling of an aryl halide substituted with a thiol or phenol 

using copper iodide as the catalyst (Scheme 1). RN-18 was obtained 
as a yellow crystalline solid in 63% yield. 

Mohammed et al. [8] also carried out the synthesis of RN-18 
from a precursor compound synthesized via a C-S cross-coupling 
reaction, followed by amidation (Scheme 2).  

Consequently, the same authors described the synthesis of four 
RN-18 derivatives by modifying the amide functionality as well as 
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Fig. (1). Sulfur-containing drug molecules. 
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Fig. (2). Structure of compounds RN-18 and RN-19. 
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Scheme 1. Synthesis of RN-18 according to the procedure of Ali et al. [7]. 
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Scheme 2. Synthesis of RN-18 according to the procedure of Mohammed et al. [8] Reagents and conditions: (a) 4-Fluoronitrobenzene, K2CO3, DMF, 120 °C, 
8 h; (b) SOCl2, cat. DMF, benzene, 80°C, 2 h; (c) ortho-anisidine, Et3N, benzene, 80°C, 5 h. 
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introducing a heterocyclic system: 1,3,4-oxadiazole (1a), 1,2,4-
oxadiazole (1b), 1,2,3-triazol-1,4-dissubstituído (1c), and 1,2,3-
triazol-1,5-dissubstituído (1d) [6] (Scheme 3). 

Recently, Santos et al. [9] also synthetized RN-18, from a 
synthetic precursor via a cross-coupling reaction between 
thiosalicylic acid and 1-iodo-4-nitrobenzene using a minimum 
amount of a recyclable catalyst consisting of palladium and ethanol 
as a green solvent (Scheme 4). RN-18 was then obtained via an 
amidation reaction using ortho-anisidine in anhydrous toluene and 
Et3N.  

2.2. Studies on the Activity of RN-18  

The family of VIF antagonist molecules based on RN-18 reduce 
the viral infectivity and increases the degradation of VIF, which 
proportionally increases the incorporation of A3G into the virus and 
increases cytidine deamination in the viral genome [6]. 

RN-18 and RN-19 inhibit HIV-1 replication in a dose-
dependent manner (IC50 = 6 and 25 μM, respectively) in non-
permissive cells only (H9, CEM) [7].  

In permissive cells (MT4), RN-18 does not inhibit the viral 
infectivity at 100 μM, showing that this family of inhibitors are 

specific for VIF [6]. Once RN-18 has the capacity to inhibit HIV-1 
replication in non-permissive cells only, it is considered a VIF 
antagonist [5]. 

Zhou et al. [10] discovered a potent compound (EC50 = 1.54 
μM) via sulfur oxidation and modification of the RN-18 thioether 
ring. This resulted in an increase in the antiviral activity of >150-
fold when compared to RN-18 in non-permissive H9 cells. 
Subsequently, glycine-based amidation gave a compound exhibiting 
high water solubility, which inhibited HIV-1 virus replication with 
EC50 = 0.228 μM (Scheme 5).  

To date, data analysis has indicated that RN-18 is a specific VIF 
inhibitor of HIV-1 replication and the VIF–A3G interaction is a 
valuable target for the development of antiviral therapies for HIV-1 
infections [7].  

3. SYNTHESIS AND ACTIVITY STUDIES OF QUETIAPINE  

3.1. Previous Reports on the Synthesis of Quetiapine  

Dibenzothiazepines have been widely studied due to their large 
number of biological applications, which makes this class of 
compounds very important for pharmaceutical purposes [11]. One 
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Scheme 3. The synthesis of RN-18 derivatives according to the procedure of Mohammed et al. [6]. 
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Scheme 4. Synthesis of RN-18 according to the procedure of Santos et al. [9]. 
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of the first dibenzothiazepines synthesized was clotiapine, a 
compound used to treat schizophrenia, which showed serious 
adverse reactions in patients [12]. For this reason, new compounds 
were developed including olanzepine, quetiapine, and ziprasidone 
(Fig. 3) [12]. 

Among them, quetiapine fumarate presented the best efficiency 
for this disease, which significantly decreased the adverse reactions 
due to its neurotropic and psychotropic properties [13]. 

Some studies have revealed the potential application of 
quetiapine to treat acute cases of bi-polarity in addition to the anti-
emetic activity of the dibenzothiazepine core [14]. 

Quetiapine fumarate, also known as 2-(2-(4-dibenzo[b,f][1, 
4]thiazepin-11-yl)piperazin-1-yl-ethoxy), is obtained from a 
dibenzo[b,f][1,4]thiazepin-11[10H]-one intermediate and is 
composed of a seven-member ring bearing an amide group, which 
is usually prepared via a C-S cross-coupling reaction [15]. 

Due to the pharmaceutical importance of quetiapine, other 
synthetic routes have been proposed in the literature aimed at 
preparing the dibenzothiazepine core. 

Panda et al. [16] described two synthetic routes using CuFe2O4 
particles as the catalyst. In both routes, 2-aminobenzenethiol was 
used as the nucleophile; for final product 2, the researchers used 
methyl 2-iodobenzoate as the electrophile and for product 3, 2-
bromo-5-chlorobenzaldehyde was used (Scheme 6). 

According to Guo et al. [17], the synthesis of the 
dibenzothiazepine core may be accomplished upon treating ortho-
fluoronitrobenzene with thiophenol, reduction of the nitro group 
using Fe/AcOH, followed by acylation of the resulting amine to 
give the amide of interest. This amide is treated with 
polyphosphoric acid to give the dibenzothiazepine product (Scheme 
7). 

Lin et al. [18] have described the synthesis of dibenzo[b,f] 
[1,4]thiazepines using ortho-aminothiophenol and an ortho-halo-
benzaldehyde under microwave irradiation. During the cyclo-
condensation reaction, several reaction parameters such as the base, 
solvent, and temperature were investigated and the use of a strong 
base such as KOtBu was required to give a significant product yield 
(Scheme 8).  
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Scheme 5. Synthesis of RN-18 derivatives according to the procedure of Zhou et al. [10]. 
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Scheme 6. Synthesis of dibenzothiazepines using 10 mol% CuFe2O4 and KOtBu in N2 atmosphere according to the procedure of Panda et al. [16].  
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Scheme 7. Synthesis of dibenzothiazepines according to the procedure of Guo et al. [17]. 
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Fig. (3). Representive drugs used to treat schizophrenia [12]. 
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Scheme 8. Synthesis of dibenzo[b,f][1,4]thiazepines according to the procedure of Lin et al. [18]. 
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Scheme 9. Synthesis of dibenzo[b,f][1,4]thiazepine-11[10H]-one according to the procedure of Kandula [15].  
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Scheme 10. Synthesis of dibenzo[b,f][1,4]thiazepine according to the procedure of Saha et al. [19]. 
 

Due to the problems found in the synthetic route used to 
prepare the dibenzothiazepine core, Kandula proposed an efficient 
route to dibenzo[b,f][1,4]thiazepine-11[10H]-one [15]. This route 
succeeded in obtaining the dibenzothiazepine core using 2-

(phenylthio)aniline and triphosgene in toluene, followed by the 
addition of methanesulfonic acid to carry out the cyclization 
reaction to give the compound of interest, thus enabling quetiapine 
fumarate to be prepared in three steps (Scheme 9).  
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Saha et al. [19] described the synthesis of dibenzothiazepine 
starting from ortho-aminothiophenol and ortho-chloro-
benzaldehyde via a cyclization reaction using a copper catalyst. 
This reaction was performed over two steps, including the 
formation of the requisite imine, followed by the addition of the 
catalyst (Scheme 10).  

Gudisela et al. [14] proposed the synthesis of the 
benzothiazepine core in order to study its capacity as a cancer 
inhibitor using a cross-coupling reaction between 1-chloro-2-
nitrobenzene and thiophenol in the presence of a strong base in 
MeOH. The as-obtained compound was reduced using iron powder 
and ammonium chloride, the resulting amine converted into its 2-
(phenylthio)phenylcarbamate, and then treated with polyphosphoric 
acid (PPA) to give dibenzo[b,f][1,4]thiazepine-11[10H]-one 
(Scheme 11).  

Recently, Cheung et al. [20] proposed the synthesis of the 
diazepine core via the reduction of nitrobenzene using zinc and 
trimethylsilyl chloride (TMSCl). The resulting product was then 
cyclized to form the diazepine core (Scheme 12). 

Chen et al. [21] described the synthesis of diazepine in a single 
process via a Goldberg intramolecular reaction using a substituted 
2-bromobenzamine and 2-bromothiophenol as starting materials in 
the presence of a N,N-dimethylglycine ligand and copper iodide 
catalyst (Scheme 13). 

3.2. Studies on the Activity of Quetiapine 

Quetiapine fumarate has been successfully used to treat 
schizophrenia due to its high affinity with serotonin compared to 
dopamine [12]. This drug is considered efficient in patients resistant 
to the side effects of schizophrenia, unlike clonazepine, which 
seems to be ineffective [12]. 

Antipsychotic studies have been performed using quetiapine, 
and its efficacy in relation to common antipsychotics, such as 
chlorpromazine and haloperidol, was investigated [22]. One of the 
main advantages related to the use of quetiapine is the minimization 
of any side effects [22]. 

Studies on the dibenzothiazepine core have demonstrated that 
the presence of heterocyclic or aliphatic groups containing nitrogen, 
oxygen, and sulfur results in compounds with bactericidal activity 
[23]. 

Escherichia coli, Klebsiella pneumoniae, Staphylococcus 
aureus, Bacillus cereus, Pseudomonas aeruginosa, and Serratia 
marcescens [23] were tested as Gram-negative and Gram-positive 
bacteria. To prove the efficiency of this bactericidal agent, 
tetracycline was used as a reference. Thus, the activity of the test 
compounds was observed by the evolution of the inhibition zone on 
agar plates inoculated with these bacteria [23] (Fig. 4). 

 Gudisela et al. have recently described the efficiency of the 
dibenzodiazepine core as an anti-emetic for nausea and vomiting 
during the treatment of advanced breast cancer (MDA-MB 231). 
The antiproliferative activity of the tested compound was also 
assessed in cancer cells, which exhibited the effective inhibition of 
leukemic cells. It is worth mentioning that the data demonstrate the 
anticancer potential of the compound [14] (Fig. 5). 
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Fig. (4). Anti-bactericidal agent derived from dibenzothiazepine [13]. 
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Scheme 11. Synthesis of dibenzo[b,f][1,4]thiazepine-11(10H)-one according to the procedure of Gudisela et al. [14]. 
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Scheme 12. Synthesis of the diazepine core according to the procedure of Cheung et al. [20]. 
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Scheme 13. Synthesis of dibenzothiazepine according to the procedure of Chen et al. [21]. 
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Fig. (5). A quetiapine derivative with anticancer activity [14]. 

4. SYNTHESIS AND ACTIVITY STUDIES OF 3-
ARYLTHIOINDOLE DERIVATIVES 

4.1. Synthesis of 3-arylthioindole Derivatives  

Indoles constitute an important class of compounds found in 
natural products and medicinal chemistry [24, 25]. Due to their 
importance, a lot of research attention has been drawn to the 
synthesis of this family of compounds via the total construction or 
modification of the indole ring [26]. Their structure, which is 
electron-rich, enables them to react with electrophiles to form new 
C-C or C-heteroatom bonds [27]. Among the numerous indole 
derivatives reported to date, it is known that the 3-position of indole 
may be functionalized by heteroatoms, more specifically, a sulfur 
atom, which is the case for 3-acylthioindoles and 3-arylthioindoles 
[28] (Fig. 6). 
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Fig. (6). (a) Indole, (b) 3-alkylthioindole, and (c) 3-arylthioindole. 

3-Thioindoles have attracted considerable interest from the 
pharmaceutical industry due to their therapeutic value in the treat-
ment of HIV [29, 30], cancer [31], obesity [32], heart disease [33], 
and allergies [34] (Fig. 7). With this perspective, the sulfenylation 
of indole leads to the formation of important precursors used 
toward the synthesis of new compounds. 

Currently, these compounds have been the object of important 
experimental studies and many methodologies have been developed 

to achieve them, including: a) The electrophilic substitution of 
indoles with sulfenylating agents in the presence of metal catalysts 
such as copper [35], palladium [36], cerium [37], magnesium [38], 
iron [39], ruthenium [40], and vanadium [27], and strong bases 
(KOH, triethylamine) or Lewis acids (Bu3SnH, TMSS) [41, 42]; (b) 
electrophilic cyclization of 2-alkynylanilines with arylsulfenyl or 
disulfide chlorides [36, 43]; c) the addition of sulfanilic radicals to 
acinilazides [44]; and d) the use of aryl Grignard reagents and 
disulfide lithiated heteroaromatics [45]. 

In this context, the direct sulfenylation of indoles using 
sulfenylating agents such as thiols [27], disulfides [46], sulfenyl 
halides [47], quinone containing mono-O,S-acetals groups [48], N-
thioarylphthalimides [35, 38, 49], in situ activated thiols using N-
chlorosuccinamide, bis(trifluoroacetate) phenyl(III)iodide [50], 
sulfonyl hydrazides [51, 52], sulfinic acids [53, 54], arylsulfonyl 
chlorides [55, 56], para-arylsulfinates [57], and α-acylthiones [58]. 

Among the as-mentioned methodologies, we observed that 
transition-catalyzed cross-coupling reactions involving aryl halides 
and thiols had become one of the most important methods for the 
synthesis of diaryl sulfides. Over recent years, direct sulfenylation 
via functionalization of the C-H bond has drawn a great deal of 
interest since it can lead to a more efficient synthesis and a reduced 
number of steps [54-40]. Although several synthetic approaches 
have been developed, many are still considered impractical in view 
of the high cost of reagents, severe reaction conditions, large 
quantities of reagents, inert atmosphere requirements, and long 
reaction times [27, 46-58]. Thus, several researchers have 
developed novel synthetic strategies that enable the installation of 
3-(alkylsulfonyl) and 3-(arylsulfonyl) functionalities on an indole 
substrate starting from suitable and readily available precursors. 

Golzar et al. [59] have described the sulfenylation of indole 
using an inexpensive copper-based catalyst (CuI) and aryl halides in 
the presence of thiourea under normal atmospheric conditions to 
give the target products in 80–90% yield. The same reagents and a 
Pd(II)-(KCC-1/BTB/Pd) catalyst consisting of fibrous nanosilica 
(KCC-1) as a functionalized support containing 1,3-bis (dimethyl-
thiocarbamoyloxy) benzene (BTB) groups complexed with Pd(II) 
were used. Zhiani et al. [60] also described the synthesis of various 
3-sulfenylindoles derivatives under green conditions, which gave 
the target products in up to 90% yield (Scheme 14). 

Studies performed by Devi et al. [61] have revealed the 
differences observed using Pd(II) and Ni(II) catalysts in the C-S 
cross-coupling reaction compared to the sulfenylation of indoles 
with active methylenes using iron salts. The Pd(II) complex shows 
slightly better reactivity when compared to Ni(II). The conditions 
were also based on the use of non-toxic solvents, aryl halides, and 
thiourea as alternatives to conventional sulfur sources, which result 
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Fig. (7). Some biologically active 3-(arylthio)indole and 3-(arylsulfonyl)indole compounds. 
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in a very fast reaction (3 h), high efficiency (yields from 80–95%), 
and profitability in terms of the high reactivity of the catalyst. 

Another selective indole sulfenylation reaction involving 
disulfides using iron(III) fluoride as a catalyst was presented by 
Fang et al. in 2009 [39]. Using the disulfide starting materials under 
the reported reaction conditions, the authors obtained the 
corresponding sulfenyl indole products in excellent yield (70–96%) 
(Scheme 15). 

In the search for clean methodologies, Ge et al. [62] reported 
the use of sodium sulfinate, an inexpensive, odorless, and stable 
solid, as the sulfenylation agent in a Cu(OAc)2-catalyzed reaction in 
the presence of D-glucosamide, which lead to the formation of the 
target product in 91% yield. 

Li et al. [63] have also described an efficient methodology (60–
90% yield) using the oxidative sulfenylation of indoles with 
different heteroarenes bound to boronic acids and elemental sulfur 

in a reaction catalyzed by Pd(II) (Scheme 16). Thus, the authors 
presented a more effective synthetic approach to obtain biologically 
important 3-arylthioindoles. 

4.2. Antiviral Activity of 3-arylthioindoles Derivatives  

The 3-arylthioindole core is present in many important 
biologically active synthetic derivatives. Recognition of the 
antiviral potential of this structural core has been confirmed in the 
work published in 1993 by Merck Research Laboratories describing 
the discovery of 5-chloro-3- (benzenesulfonyl)indole-2-
carboxamide (HIV-1 RT), a novel and potent, selective inhibitor for 
HIV-1 WTIIIB with an EC50 value of 1 nM (Fig. 8) [64]. 

Also known as indolylarylsulfones (IASs), Silvestri et al. [65] 
and Psictelli et al. [66] published a number of novel indole 
derivatives, which, in addition to the presence of the C-S bond at 
the 3-position, contain carboxamide groups similar to glycine, D 
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Scheme 14. Synthesis of 3-arylthioindoles according to the procedure of Golzar et al. [59]. 
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Scheme 16. Sulfenylation of indoles proposed by Li et al. [63]. 
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and L-alanine, and unnatural amino acids attached at the 2-position. 
Studies involving these derivatives have shown excellent 
replication activity against HIV-1 WT, and NNRTI-resistant 
viruses, some with nanomolar inhibition concentration values (Fig. 
8). 

Thus, studies on the structure–activity relationships (SARs) 
have led to the identification of three structural regions in IASs that 
can enhance the spectrum of their activity against HIV-1 
replication: Region A – introducing methoxy groups at positions 3 
and 5 of the 3-phenylsulfonyl moiety [67]; region B – 2-
carboxamide coupling with different natural or synthetic amino 
acids [65,66]; and region C – changing the substitution pattern at 
positions 4 and 5 on the indole ring, such as 5-chloro-4-fluoro [47] 
(Fig. 9). 
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Fig. (9). Important structural regions in the IAS derivatives used for SAR 
studies in the fight against HIV. 

Thus, IASs are considered as a potent class of non-nucleoside 
reverse transcriptase type 1 inhibitors of HIV [47]. 

4.3. Antitumor Activity of 3-arylthioindoles Derivatives  

Besides their previously reported antiviral potential, the 3-aryl-
substituted indole core has attracted a great deal of interest from 
researchers because of its antitumor potential. In the works carried 
out by La Regina et al. [68-70] and De Martino et al. [31], the 
authors presented a series of arylthioindoles (ATIs) with the 
potential to inhibit the polymerization of tubulin and cancer cell 
growth (MCF-7), in which the substituent at the 2-position of the 
indole ring, as well as the presence of the 3-aryl substituent lead to 
the formation of potentially active compounds (Fig. 10).  

La Regina et al. [47] further disclosed that substituents at the 5-
position of the indole moiety such as a halogen or ether group lead 
to compounds that significantly inhibit the growth of MCF-7 tumor 
cells with IC50 values <50 nM. 

It is known that some structural features result in the 
improvement in the antitumor activity of the indole core, such as 
the presence of a 3-arylthio group substituent in (A) attached via a 
C-S bond (C), the inclusion of an ether or halogen substituent in 
(D), and a substituent at the 5-position of the indole moiety in (D) 
(Fig. 11) [31, 70, 71]. 
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Fig. (11). Structural regions in IASs with potential antitumor activity. 

5. SYNTHESIS AND ACTIVITY STUDIES OF EBSULFUR 

AND ITS DERIVATIVES 

5.1. Previous Reports on the Synthesis of Ebsulfur  

Ebselen (1,2-benzoselenazol-3(2H)-one) (Fig. 12a) is an 
important compound, which has attracted a great deal of research 
interest in medicine and biology in view of its promising potential 
as an antioxidant, inflammatory agent, anti-stroke drug, bipolar 
disorder preventor, Mycobacterium tuberculosis Ag85 inhibitor, 
and anticancer agent [71]. Ebselen is lipid soluble, exhibits 
glutathione peroxidase-like (Gpx) activity, and is the first known 
organoselenium compound with minimal toxicity [72]. The 
synthesis of 1,2-benzoselenazol-3(2H)-one has been developed due 
to these fascinating properties [73]. Ebselen derivatives have been 
synthesized via the ortho-lithiation of benzamides, annulation of 
ortho-selanylbenzoyl chloride with primary amines, radical 

 

Fig. (10). The structures of the ATIs derivatives developed by La Regina et al. [68-70]. 
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cyclization of diselenides and transition metal-mediated cross-
coupling reactions [74]. In order to reduce the accumulation of 
selenium in the organism, ebsulfur (1,2-benzoisothiazol-3(2H)-one) 
(Fig. 12b) was developed, in which the selenium atom of ebselen is 
replaced by a sulfur atom. Thus, ebsulfur and its derivatives have 
been the focus of interest for application against several diseases 
[75]. 

Se

N

O

(a)

S

N

O

(b)  

Fig. (12). The structures of (a) ebselen and (b) ebsulfur. 

In terms of its synthesis, ebsulfur can be prepared upon the 
reaction of 2,2'-disulfanediyldibenzoic acid followed by treatment 
with thionyl chloride, amidation with a primary amine, and 
intramolecular cyclization. A classic approach involves two steps: 

(a) Starting from 2,2'-disulfanediyldibenzoic acid to give 2,2'-
disulfanediyldibenzoyl chloride and (b) annulation of the ortho-
sulfanylbenzoyl chloride with primary amines using triethylamine 
in dichloromethane (Scheme 17) [76]. 

The toxicity of the reagents used in the classical synthesis of 
ebsulfur has restricted their application on an industrial scale. 
Therefore, new methodologies have been developed to obtain 
ebsulfur, for example a copper-mediated sulfur-nitrogen coupling 
reaction using 2-halo-arylamides, sulfur powder, and copper 
iodide/1,10-phenanthroline has been reported by Kumar et al. in 
2009 (Scheme 18) [77]. 

Aiming to make the synthetic route environmentally friendly, 
Xi et al. [78] proposed the synthesis of ebsulfur and its derivatives 
in water using ortho-bromobenzamide derivatives and potassium 
thiocyanate (KSCN) with copper iodide/1,10-phenantroline as the 
catalyst. Nine compounds of interest were prepared (Scheme 19). 

Another strategy to obtain ebsulfur is based on C-S/S-N bond 
formation mediated by C-H activation. In 2014, Shi et al. [79] 
described the synthesis of ebsulfur using N-(2-(pyridin-2-
yl)propan-2-yl)benzamides and sulfur in the presence of Cu(OAc)2  
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Scheme 17. Classical synthesis of 1,2-benzoisothiazol-3(2H)-one. 
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Scheme 18. S-N coupling reaction of ebsulfur. 
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Scheme 19. Copper-catalyzed synthesis of ebsulfur derivatives using ortho-bromobenzamides and potassium thiocyanate. 
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Scheme 20. Synthesis of ebsulfur via C-H activation. 
 
and Ag2O. The authors reported the synthesis of thirty examples of 
ebsulfur derivatives in moderate yield (16–99%). Moreover, the 
reactions were performed on a multi-gram scale, which enabled the 

introduction of several functional groups resulting in the efficient 
synthesis of several important compounds in medicinal chemistry 
(Scheme 20). 
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As an alternative synthetic route, the carbon-disulfide bond has 
been used as a building block for sulfur compounds in organic 
synthesis due to its simplicity, economy of materials, and 
efficiency. In this context, Chen et al. [80] used CS2 as a starting 
material for the construction of C-S/N-S bonds during the synthesis 
of ebsulfur from 2-halo-benzamides. The reaction was conducted in 
the presence of CuBr and L-proline at 80°C in DMSO and 25 
ebsulfur derivatives were obtained (Scheme 21).  

Considering the importance of ebsulfur, researchers have 
searched for a methodology without requiring the use of a copper 
salt and toxic reagents because the presence of small amounts of 
these metals (even on a ppm scale) can cause disorders of the 
human immunological system. Wang et al. [81] have reported  
the synthesis of a variety of ebsulfur derivatives using KBr as  
a catalyst via an intramolecular oxidative dehydrogenation cycli-
zation reaction under air conditions at 110°C to form the N-S bond 
(Scheme 22). 

5.2. Ebsulfur 

Ebsulfur derivatives act as important compounds for pharma-
ceutical applications due to their proven bioactivity, such as 
antiviral, antifungal and antibacterial properties, inhibitory activity 
toward trypanothione reductase [82], and use as a treatment for 
dengue fever. Focusing on the value of the ebsulfur core, significant 
attention from medicinal chemists has led to the functionalization of 
1,2-benzoisothiazol-3(2H)-one (Fig. 13) [83].  
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Scheme 22. KBr-catalyzed N-S bond formation. 

5.2.1. Ebsulfur Derivatives Used to Treat Parasitic Infections 
Infections caused by the protozoan parasite Trypanosoma 

brucei can result in African trypanosomiasis and human sleeping 
sickness. African trypanosomiasis has two stages in humans: (1) 
Parasites are found in the blood in the first stage and (2) the 
parasites cross the blood–brain barrier causing neurological 
symptoms in the second stage, leading to death if left untreated 
[84]. These parasites require a unique thiol redox system for DNA 
synthesis and defense against oxidative stress. This involves 
trypanithione and trypanothione reductase (TrxR) rather than the 
thioredoxin and glutaredoxin systems of mammalian hosts [85]. 
Thus, ebsulfur derivatives have emerged as a promising option for 
the development of drugs used to treat African trypanosomiasis. 
Holmgren and co-workers [85] showed that ebsulfur (EbS) is a 
potent inhibitor of Trypanosoma brucei growth with a high 
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Fig. (13). Important biological properties of ebsulfur and its derivatives. 
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Scheme 21. CS2 promoted the synthesis of ebsulfur derivatives. 
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selectivity index over mammalian cells. During their analysis, 
Halmgren’s group observed that ebsulfur inhibited TryR activity. 
Soluble ebsulfur derivatives have been synthesized and used to treat 
Trypanosoma brucei infection in mice in combination with 
nifurtimox. Therefore, ebsulfur derivatives interrupt the trypano-
thione system, hampering their defense against oxidative stress 
[86]. 

5.2.2. Ebsulfur Derivatives with Antifungal Activity 
Fungi-based infections have become a public health threat, 

mainly due to the increased number of immunocompromised 
patients. Among these are the AIDS patients, those with primary 
immunodeficiency, and those undergoing chemotherapy or organ 
transplantation [87]. The most common infections are Candida 
fungi, Cryptococcus neoformans, Aspergillus fuminatus, and 
Aspergillus nidulas. The most common therapeutic compounds 
used to treat fungal infections are azoles, nystatin (NYS), and (3) 
candicidin (CAN) [88].  

Due to inadequate use, such as the dose and duration of 
treatment using these fungicidal agents, new fungal strains resistant 
to these drugs have evolved. Thus, the need to develop new 
compounds with antifungal activity has increased. In this scenario, 
ebsulfur appears to be structurally similar to ebselen with a new 

mechanism of action, which is distinct from the fungicidal agents 
previously mentioned [89]. 

The antifungal activity of ebsulfur has not been fully elucidated, 
but Garneau-Tsodikova et al. [90], investigated the antifungal 
activity of ebselen, esulfur and 32 derivatives against strains of 
Candida and Aspergillus in 2016. The ebsulfur derivatives exhibit 
increased fungicidal activity against all the fungal strains studied 
when compared to ebselen and the reference drugs. Thus, we can 
consider ebsulfur and its derivative as a powerful tool to fight 
fungi-based diseases. 

5.2.3. Ebsulfur Derivatives Used to Treat Dengue Fever 
The dengue virus mostly affects humans and belongs to the 

Flaviviridae family (genus Flavivirus). Dengue fever is a relatively 
mild illness with rash. However, infection by the dengue virus can 
evolve into a more severe illness causing bleeding [91]. There are 
four kinds of serotypes, which react in the same way in humans. 
Approximately 2.5 billion people live in the endemic regions of the 
dengue virus. Annually between 50 to 100 million cases of this 
virus occur worldwide, causing around 500,000 cases of dengue 
hemorrhagic fever (DHF) and 22,000 deaths. The transmission of 
the dengue virus occurs through mosquito bites from the Aedes 
aegypti genus [92]. Classic dengue fever has some common clinical 
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manifestations: Fever, headache, vomiting, muscular pain, fatigue, 
and malaise [93]. In view of the disease caused by the dengue virus, 
there is a need to develop an inhibitor of virus replication. Ebsulfur 
derivatives play an important role in various pharmaceutical 
applications and have shown a broad range of bioactivity against 
various diseases [94]. In this context, Groutas et al. [95] described 
24 ebsulfur derivatives containing the 1,2-benzisothiazol-3(2H)-
one-1,3,4-oxadiazole core and studied them against dengue virus 
proteases. During their analysis, ten compounds showed >50% 
inhibition against the dengue virus. 1,2-Benzisothiazol-3(2H)-one-
1,3,4-oxadiazole can be obtained from 2,2'-disulfanediyldibenzoic 
acid (Scheme 23). 

6. SYNTHESIS AND ACTIVITY STUDIES OF DAPSONE  

6.1. Previous Synthesis of Dapsone  

Diarylsulfones and derivatives are an important class of 
compounds due to their wide range of applications in 
pharmaceuticals and polymers [96]. These compounds possess 
several biological activities and are used as drugs for the treatment 
of some diseases. An important example of a diarylsulfone is 4,4-
aminodiylsulfone, known as dapsone (Fig. 14), which is a well-
known antibacterial, anti-inflammatory, and antiprotozoal drug 
whose action against various diseases has been widely studied [97]. 
It is used to treat infectious diseases (such as leprosy and malaria), 
non-infectious inflammatory diseases, and skin diseases [98].  

S

H2N NH2

O

O

 

Fig. (14). The structure of dapsone. 

The very first synthesis of this compound was performed in 
1908 by Fromm and Wittmann [99] using 10 g of para-nitro-

chlorobenzene and 1 g of sulfur dissolved in a mixture of ethanol 
and sodium hydroxide solution. The compound was obtained, but in 
low yield (~6%). Despite this synthesis, its biological activity was 
first tested in 1937.  

Throughout the years, the biological activity displayed by this 
compound has been discovered. Thus, several syntheses have 
sought to improve the synthesis and yield as well as decrease the 
cost. Over the last 15 years, several methodologies have been 
developed, and due to its large-scale use as a medicine, several 
patents have been applied for due to their application on an 
industrial scale. 

In 2009, Villa and colleagues [100] applied for a patent for the 
synthesis of dapsone, attempting to implement it at a low cost and 
high yielding industrial process. The process consists of 3 steps: 1) 
A condensation reaction between 4-mercaptoaniline and 4-chloro-
nitrobenzene to give 4-(4-nitrophenylsufanyl) phenylamine, 2) 
oxidation of 4-amino-4'-nitro-diphenylsulfide using H2O/Na2WO4 
to give 4-amino-4'-nitro-diphenylsulfone, and 3) reduction of 4-
amino-4'-nitro-diphenylsulfone to give dapsone (Scheme 24). 

In 2014, Allegrini and Mantegazza [101] described the 
preparation of 4-4'-dinitrophenylsulfide and its use in the synthesis 
of dapsone. This work proposed two different syntheses of 4-4'-
dinitrophenylsulfide. One starts from nitrothiophenol and chloro-
nitrobenzene (Scheme 25) and the other from 4-chloronitrobenzene 
and thioacetic acid (Scheme 26). Both approaches were carried out 
under a nitrogen atmosphere at reflux using a mixture of water and 
isopropanol as the reaction solvent and potassium carbonate as the 
base. 

The authors proceeded to use 4-4'-dinitrophenylsulfide in the 
synthesis of dapsone, which required two steps. The first step 
involves the oxidation of the sulfur atom using several reagents to 
obtain 4-4'-diamino-diphenylsulfone. In this step, a solution of 
sodium tungstate in acetic acid, hydrogen peroxide, and methyl 
isobutyl ketone was used. The second step involves the reduction of 
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Scheme 24. Synthesis of dapsone according to the procedure of Villa et al. [100]. 
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Scheme 25. Synthesis of 4-4'-dinitrophenylsulfide according to the procedure of Allegrini and Mantegazza [101]. 
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the nitro groups to the amino group (Scheme 27). For this purpose, 
the compound obtained in procedure was placed in an autoclave 
using 5% palladium on 50% wet carbon and a methanesulfonic acid 
solution. After active carbon treatment and adjusting the pH with 
sodium hydroxide, the product of interest was obtained.  

Both syntheses proposed by the authors to prepare 4-4'-
dinitrophenylsulfide are inexpensive and result in high yield and 
purity. However, the dapsone synthesis requires many steps, which 
may result in the loss of yield during the process, which makes the 
synthesis of this compound not viable. 

Yang and co-workers [96] described the synthesis of 
diarylsulfones from arenes and potassium persulfate in 2014 
(Scheme 28). The authors performed the synthesis of dapsone and 
its derivatives, as well as the large-scale synthesis of dapsone. 
Several reaction conditions were tested, and they found the optimal 
conditions for the synthesis, as shown in Scheme 28. The 
stoichiometric amounts of the reagents used in the synthesis were: 
1.0 eq of K2S2O8, 4.0 eq of TfOH, 11.0 eq of TFAA, and 0.1 eq of 
PTC. 

Frenzel and co-workers [102] used different catalysts for the 
selective oxidation of sulfides, sulfoxides, and sulfones. The 
catalysts used were transition metal-modified lacunary 
tungstosilicic polyoxometallate (TMPOM) with different transition 
metals supported or not supported on carbon. The metals used were 
manganese, iron, cobalt, and copper. The manganese catalyst 
(SiW11MnC) showed the highest selectivity for the conversion of 
sulfones to sulfoxides. For the synthesis of dapsonde, 1 mmol of 
4,4'-diaminosulfide, 0.2 mL of a 35% solution of H2O2, 100 mg of 
the manganese catalyst in 9 mL of acetonitrile were used, under 
stirring at 50°C in a 3 h reaction, which is illustrated in Scheme 29. 

6.2. Biological Activity of Dapsone 

Dapsone is currently used as a drug for several diseases, mainly 
skin diseases, and is on the list of essential medicines of the World 
Health Organization [103]. Although its synthesis was carried out 
in 1908, its biological activity was only tested in 1937 by Buttle  
et al. [104], in whose research its antibacterial activity was des-
cribed, as well as its activity against Streptococcus infections. 

From these results, several studies have been performed, aiming 
to use this drug in the treatment of other diseases. Tests against 
leprosy showed the high toxicity of this compound in animals, 
however, when tested in humans, this toxicity was not observed. 
Dapsone was first used in humans in 1945 and was used orally in 
1949 [105]. The drug showed a great reduction or inhibition of 
leprosy symptoms [106] and has become a popular and widely used 
treatment for this disease. 

After its efficacy in the treatment of leprosy was proven, studies 
on the activity of this drug for various skin diseases were carried 
out [107]. It is known that the antibacterial action of dapsone is due 
to its ability to inhibit the conversion of para-aminobenzoic acid to 
folic acid. 

The anti-inflammatory activity of this drug was also studied, in 
which its effective action was discovered in 1997. Debol et al. 
[108] proposed a mechanism of action for the anti-inflammatory 
activity presented by dapsone, which has not been confirmed to 
date. 

Dapsone has also been shown to be effective in treating malaria 
[109] and pneumocytosis in HIV patients [103]. 
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Scheme 26. Synthesis of 4-4'-dinitrophenylsulfide according to the procedure of Allegrini and Mantegazza [101]. 
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Scheme 27. Synthesis of dapsone according to the procedure of Allegrini and Mantegazza [101]. 
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CONCLUSION 

In general, sulfur-containing compounds present great 
therapeutic potential due to their broad spectrum of biological 
properties. 

A comprehensive review of the studies on sulfur compounds 
reported to date has revealed that there is a structure–activity 
relationship, which may be useful in the search for new therapeutic 
agents. 

In this review, we have reported the major synthetic routes and 
biological activities of some sulfur drugs already marketed and 
other molecules with great potential as future drugs, indicating that 
sulfur-containing compounds may be a chemical tool for many 
other biological treatments. 

LIST OF ABBREVIATIONS 

AIDS = Acquired Immune Deficiency Syndrome 

CAN = candicidin 
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DMF = Dimethylformamide 
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HIV = Human Immunodeficiency Virus 
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